Stochastic Harmonic Grammars as Random Utility Models

نویسنده

  • Edward Flemming
چکیده

There are a variety of ways of building stochastic grammars based on Harmonic Grammar (Hayes 2017). A basic division is often drawn between ‘Maximum Entropy’ grammars and Noisy Harmonic Grammars, which are superficially quite different in form. However both can be formulated as Random Utility Models, which are widely used in economics to model choice among discrete alternatives (Train 2009). Explicitly formulating stochastic harmonic grammars in these terms provides a basis for analyzing the properties of alternative schemes for deriving probabilities from Harmonic Grammars.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Calibration and Application of Logit-Based Stochastic Traffic Assignment Models

There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...

متن کامل

Fuzzy Random Utility Choice Models: The Case of Telecommuting Suitability

Random utility models have been widely used in many diverse fields. Considering utility as a random variable opened many new analytical doors to researchers in explaining behavioral phenomena. Introducing and incorporating the random error term into the utility function had several reasons, including accounting for unobserved variables. This paper incorporates fuzziness into random utility mode...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

-gram Probabilities from Stochastic Context-free Grammars

We present an algorithm for computing n-gram probabilities from stochastic context-free grammars, a procedure that can alleviate some of the standard problems associated with n-grams (estimation from sparse data, lack of linguistic structure, among others). The method operates via the computation of substring expectations, which in turn is accomplished by solving systems of linear equations der...

متن کامل

Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data

We present conditional random fields , a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hidden Markov models and stochastic grammars for such tasks, including the ability to relax strong independence assumptions made in those models. Conditional random fields also avoid a fundamental limitation of maximum e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017